
Journal of Global Optimization 11: 287–311, 1997. 287
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

A Reduced Space Branch and Bound Algorithm for
Global optimization

THOMAS G. W. EPPERLY and EFSTRATIOS N. PISTIKOPOULOS
Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine,
Prince Consort Road, London SW7 2BY

(Recieved: 12 March 1996; accepted: 31 January 1997)

Abstract. A general class of branch and bound algorithms for solving a wide class of nonlinear
programs with branching only in a subset of the problem variables is presented. By reducing the
dimension of the search space, this technique may dramatically reduce the number of iterations and
time required for convergence to � tolerance while retaining proven exact convergence in the infinite
limit. This presentation includes specifications of the class of nonlinear programs, a statement of a
class of branch and bound algorithms, a convergence proof, and motivating examples with results.

Key words: Global optimization, branch and bound, reduced space, convex envelope

1. Introduction

One line of development of branch and bound algorithms involves solving a convex
relaxation of the original problem to generate the lower bound. This approach stems
from the work of Falk and Soland [4], Al-Khayyal and Falk [1], and McCormick
[10, 11] where convex envelopes are used to replace nonconvex terms in developing
the relaxation. Recent work in this line of development has focused on developing
tighter constraints in the relaxation to produce higher lower bounds [2, 3, 18, 20, 21]
or on reducing the variable domain [19] with the overall goal of reducing the need
to branch. Branching is avoided because it involves the combinatorial search of
a multidimensional space, and the computational work can grow exponentially.
The reduced space algorithm presented below is intended to complement new or
existing global optimization algorithms in this line of development by reducing the
dimension of the search space for a wide class of problems.

Several other researchers have presented reduced space branch and bound algo-
rithms, but these algorithms require problems with special properties. Phillips and
Rosen [16] use branch and bound in a subset of the variable space in solving
minimizations of a concave quadratic function over a bounded polyhedral set.
Their algorithm branches only on the nonlinear variables, and it is able to solve
problems with numerous linear variables. Horst and Thoai [7] presented a conical
branch and bound algorithm for solving concave problems with numerous variables
appearing linearly. The dimension of the problem to be solved via the branch and
bound algorithm is only one dimension greater than the number of nonlinear vari-

Firstproof: PIPS No.: 134235 MATHKAP

134235 jogo384.tex; 7/08/1997; 12:45; v.7; p.1

288 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

ables. Muu and Oettli [13, 14] present a combined branch and bound and cutting
plane algorithm to perform branch and bound in a subset of the problem variables.
Their algorithm can treat problems with convex-concave constraints. Sherali and
Alameddine [20] present a branch and bound algorithm based on the reformulation-
linearization technique which has proven convergence for bilinear problems when
branching on a subset of the variables. They point out that the algorithm can branch
on the smaller of the two sets of variables. Horst and Thoai [8] present an algo-
rithm for d.c. programming problems that branches in a reduced space. Phong, An,
and Tao [17] present a reduced space branch and bound algorithm for indefinite
quadratic programs which branches only on the concave variables.

The reduced space algorithm presented below is applicable to sparse nonlinear
programs that can be expressed in factorable form, which includes most practical
problems [11]. Smith and Pantelides [23] present an algorithm for reformulating
expressions into the necessary form. Not all programs in factorable form will be
able to branch in a reduced space, but any problem in factorable form can be
quickly and automatically tested to see if it can use a reduced space.

The class of problems that can be solved in a reduced space is detailed in Section
1. Section 2 details the convex constraints that must be included in the convex
relaxation used to obtain the lower bound. The reduced space algorithm is given
in Section 3, and a convergence proof is provided in Section 4. Section 5 includes
a comparison of full and reduced space solutions of three example problems, and
Section 6 has some brief concluding remarks. The appendix contains a proposed
algorithm for determining the minimal set of branching variables and details of the
example problems.

2. Problem Definition

Consider the problem,

Problem (P1)

min
x;y

f(x; y) (1)

s.t. g(x; y) � 0 (2)

h(x; y) � 0 (3)

x 2 X (4)

y 2 Y (5)

with

X := [x; �x] � RN ; Y := [y; �y] � RM

f : X � Y ! R; g : X � Y ! RG; h : X � Y ! RH :

Equality constraints may be included in this framework as a pair of opposing
inequality constraints. In this formulation, the y variables require branching, and

jogo384.tex; 7/08/1997; 12:45; v.7; p.2

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 289

the x variables do not. A proposed algorithm to determine X and Y for a program
in factorable form is included in the appendix. To facilitate the presentation below,
D is introduced as the feasible space of problem P1,

D := f(x; y) 2 X � Y : g(x; y) � 0; h(x; y) � 0g: (6)

In order to guarantee convergence of the branch and bound algorithm while
branching only in the Y space, it is necessary to place some restrictions on the
functions f , g, and h. g must be a convex function, and f and each element of
h must satisfy the conditions given below for function w. Let w be any element
of h or f , so w : X � Y ! R. Convergence can be established when w has the
following form:

w(x; y) := wA(x) +
X
i2Q

wB
i (x)w

C
i (y) + wD(y) (7)

where Q is a set of indices indicating the bilinear interactions between functions
of x and functions of y. wA and wB must be convex, and wC and wD must be
continuous. Further conditions on wA, wB , wC , and wD are stated below after the
necessary terminology has been defined.

It is assumed that x, �x, y, and �y are finite; thus, X and Y are compact sets that
can be thought of as N and M dimensional rectangles. The partition sets used by
this algorithm are all rectangular and compact with

Xk := [xk; �xk]; (8)

Y k := [yk; �yk]: (9)

Tuy [24] showed that rectangular subdivisions are weakly exhaustive. Some defi-
nitions are required for the presentation of the underestimating program, algorithm
and proof.

DEFINITION 1. Given a set X � Y , the subdivision of partition sets of X � Y

is called exhaustive on Y , if it produces an infinite, nested sequence of partition
sets, f(Xk; Y k)g and an associated sequence of diameters d(Y k) satisfying the
following:

(X0; Y 0) � (X1; Y 1) � � � � � (Xk; Y k) (10)

lim
k!1

d(Y k) = 0 (11)

lim
k!1

Y k =
\
k

Y k = f _yg: (12)

This definition is an extension of Horst’s [6] whose definition is recovered when
X is empty in which case the subdivision is just called exhaustive.

DEFINITION 2. A convex underestimator of a function '(y) over the domain Y k

is a convex function denoted �'k(y) satisfying

�'k(y) � '(y) 8y 2 Y k: (13)

jogo384.tex; 7/08/1997; 12:45; v.7; p.3

290 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

DEFINITION 3. A concave overestimator of a function '(y) over the domain Y k

is a concave function denoted '̂k(y) satisfying

'̂k(y) � '(y) 8y 2 Y k: (14)

DEFINITION 4. Given a sequence of partition sets f(Xk; Y k)g produced by a
subdivision of X � Y that is exhaustive on Y with Y k �!

k!1
f _yg, a corresponding

sequence fykg with yk 2 Y k, and a corresponding sequence fxkg with xk 2 Xk

with fxkg ! _x, a convex underestimator or concave overestimator is strongly
consistent on Y if there exist subsequences f(Xq ; Y q)g, fyqg, and fxqg satisfying

�'q(xq; yq) �!
q!1

'(_x; _y) or (15)

'̂q(xq; yq) �!
q!1

'(_x; _y): (16)

When X is vacuous, a convex underestimator or concave overestimator is called
simply strongly consistent.

DEFINITION 5. A function,', has tight bounds if one can provide upper and lower
bounds, �'k and 'k respectively, for any subrectangle Y k of Y such that for any
infinite sequence, fY kg, produced by an exhaustive subdivision with Y K ! f _yg,

'k � '(y) � �'k 8y 2 Y k; (17)

lim
k!1

'k = lim
k!1

�'k = '(_y): (18)

A function, ' has continuous tight bounds if �'k and 'k are continuous functions
of yk and �yk.

Having defined these concepts and notation, the sufficient criteria for conver-
gence of the algorithm is that f andh have convex underestimators that are strongly
consistent on Y . Such convex underestimators are available when w satisfies the
following formal conditions:

Conditions W
1. wA, wB are convex
2. wC , wD are continuous
3. strongly consistent, convex underestimators are available for wC and wD

4. strongly consistent, concave overestimators are available for wC and wD

5. wB , wC , wD have continuous tight bounds
6. For each i 2 Q, at least one of the following two conditions must hold

(a) wB
i (x) := ciTx for some constant ci 2 RN

(b) wC
i (y) � 0 for all y 2 Y ; hence, wCk

i � 0

jogo384.tex; 7/08/1997; 12:45; v.7; p.4

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 291

The following examples demonstrate some of the breadth of this class of functions:

w(x; y) := xTx+ yTBy;

w(x; y) := xTx+ xTAy + yTBy;

w(x; y) := cTx+
X
i

x2
i exp(yi):

Given convex underestimators for f and h, the following convex nonlinear
program is used to provide lower bounds and to test the feasibility of a partition
set.

Problem (P2)

min
x;y

�fk(x; y) (19)

s.t. g(x; y) � 0 (20)
�hk(x; y) � 0 (21)

x 2 Xk (22)

y 2 Y k: (23)

Based on the definition of convex underestimators, every feasible point of P1
in the subdomain Xk � Y k is feasible in P2; and the objective of P2 is less than
or equal to that of P1 for all points in Xk � Y k. Thus, P2 provides a valid lower
bound for the solution of P1 over the partition set Xk and Y k. It should be noted
that problem P2 contains only the necessary constraints to guarantee convergence
of the algorithm. If available, one may add tighter bounding constraints to P2 such
as [2, 3, 18] as long as the constraints given in P2 remain.

3. Convex Underestimators

In this section, convex underestimators for f and h satisfying conditions W will
be provided and proven to be strongly consistent on Y . This proof establishes the
sufficient conditions for the underestimating program to guarantee convergence of
the algorithm given below for a wide class of problems.

A convex underestimator of (7) is:

�wk(x; y) := wA(x) + �wDk(y) +
X
i2Q

W k
i (x; y) (24)

with

W k
i (x; y) :=

jogo384.tex; 7/08/1997; 12:45; v.7; p.5

292 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

8>>>>>>>>>>><
>>>>>>>>>>>:

max

(
�wBk
i �wCk

i (y) + wB
i (x) �w

Ck
i � �wBk

i �wCk
i ;

wBk
i �wCk

i (y) + wB
i (x)w

Ck
i � wBk

i wCk
i

)
if wBk � 0

max

(
�wBk
i ŵCk

i (y) + wB
i (x) �w

Ck
i � �wBk

i �wCk
i ;

wBk
i ŵCk

i (y) + wB
i (x)w

Ck
i � wBk

i wCk
i

)
if �wBk < 0

max

(
�wBk
i �wCk

i (y) + wB
i (x) �w

Ck
i � �wBk

i �wCk
i ;

wBk
i ŵCk

i (y) + wB
i (x)w

Ck
i � wBk

i wCk
i

)
otherwise

(25)

The proof that (24) is a convex underestimator of w follows from [10, 11],
and these references also provide a method for providing the strongly consistent,
convex underestimators and concave overestimators for the nonconvex functions
of y. The convexity of (25) follows from the definitions of convex underestimators
and convex overestimators, property 6, and the fact that a maximum of two convex
functions is convex. Each term of (24) is convex, so (24) is convex.

LEMMA 1. Given a function, w, in form (7) satisfying properties 1–6, then �w
given by (24) is strongly consistent on Y .

Proof. The definition provides that there is a sequence of subrectangles
f(Xk; Y k)g produced by a subdivision that is exhaustive on Y , a corresponding
sequence fykg with yk 2 Y k, and a corresponding sequence fxkg with xk 2 Xk

and xk ! _x. From the definition of an exhaustive subdivision, we have that
Y k ! f _yg, and it follows that yk ! _y. The upper and lower bounds on Xk are
both sequences in a compact space, so there exists a convergent subsequence, so
Xq ! X� = [x�; �x�]. Corresponding to this subsequence, there is the sequence
f(xq; �xq; yq; �yq; yq; xq)g ! (x�; �x�; _y; _y; _y; _x): From properties 1–5, �wq can be
considered as a continuous function of (xq; �xq; yq; �yq; yq; xq); therefore, the limit
of �wq as q !1 is just �wq evaluated at the limiting values.

By property 3

lim
q!1

�wq(xq; yq) = wA(_x) + wD(_y) +
X
i2Q

W1

i (_x; _y);

and applying properties 3 and 4 to W1

i , equation (25) above with the limiting
values inserted.

W1

i (_x; _y) = wB
i (_x)w

C
i (_y)

which completes the requirements for a strongly consistent convex underestima-
tor. E

4. Algorithm

This description of a general class of branch and bound algorithms is based largely
on the ideas of previous researchers [6, 11, 18, 19]. Here we present a general pur-
pose branch and bound algorithm that includes branching on a subset of the variable

jogo384.tex; 7/08/1997; 12:45; v.7; p.6

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 293

domain explicitly. Steps marked as optional can be left out without effecting the
convergence proof that follows; in practice, they are helpful for some problems.
Let �(Mk) or �(Xk; Y k) refer to the optimal objective function value of P2 for
the region Mk = (Xk; Y k) and z(Mk) or z(Xk; Y k) refer to an element of the
corresponding argmin.

ALGORITHM 1. Reduced space branch and bound algorithm

Initialization (iteration 0)

Step 1. Apply any finite methods to reduce the initial variable domain size without
removing a global optimum (e.g. see the preprocessing step [18]) to
produce X0 � X and Y 0 � Y . (optional)

Step 2. Solve problem P2, �0 := �(X0; Y 0), and z0 := z(X0; Y 0). If problem
P2 is infeasible, stop; problem P1 is infeasible.

Step 3. Apply finite variable domain reduction techniques guaranteed not to
remove a global optimum [19, 22] to produce X00 � X0 and Y 00 � Y 0.
If X00 6= X0 or Y 00 6= Y 0 and the limit to the number of variable domain
reductions has not run out, X0 := X00 and Y 0 := Y 00 repeat step 3;
otherwise, X0 := X00 and Y 0 := Y 00. (optional)

Step 4. Initialize the iteration counter k := 1, the partition M0 := f(X0; Y 0)g,
the upper bound �0 := 1, and the set of feasible points F 0 := ;.

Main Loop (iterations 1; 2; . . .)

Step 5. Apply some finite method to search for feasible points (potential optima)
of P1 such as applying a local NLP solver to P1. Let F be the potentially
empty set of feasible points located by this procedure, assign F k :=
F [F k�1. This step need not be applied at every iteration of the main
loop once a feasible point has been found. If it is skipped, F k := F k�1.

�k := min
z2F k

f(z) (26)

If F k 6= ;, define the best known feasible point

bk := argmin
z2F k

f(z): (27)

Step 6. Remove elements of the current partition that cannot contain a solution

Rk := fM 2Mk�1 : �(M) < �kg:

Step 7. Choose a nonempty collectionPk � Rk, and partition each element ofPk
into subrectangles only branching in the Y space. Call the new partition
sets P 0k.

jogo384.tex; 7/08/1997; 12:45; v.7; p.7

294 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Step 8. For each P 2 P 0k perform the following steps:

1. Apply finite variable domain reduction techniques guaranteed not to
remove a global optimum [19] to produce P � � P . Replace P 2 P 0k
with P �, and P := P �. (optional)

2. Solve P2 to obtain �(P), if P2 is infeasible or �(P) > �k remove
P from P 0k and skip to next element of P 0k.

3. Apply finite variable domain reduction techniques guaranteed not to
remove a global optimum [19] to produce P � � P . Replace P 2 P 0k
with P �. (optional)

4. If the number of variable domain reductions allowed has not run out
and P � 6= P , set P := P � and return to step 2. (optional)

Step 9. The partition set remaining is now

Mk := (Rk n Pk) [P
0

k (28)

giving a new lower bound of

�k := inf
M2Mk

�(M): (29)

If Mk is empty, �k = 1. For the sake of the convergence proof, if
Mk 6= ; the following definitions apply

Mk 2 argmin
M2Mk

�(M); (30)

zk := z(Mk): (31)

Step 10. If �k � �k > 0(� �), k := k + 1 and return to step 5; otherwise,
the problem is solved. If F k = ;, the problem is infeasible; otherwise,
�k = �k is the solution of P1, and bk is an optimal solution.

This algorithm includes the possibility of reducing the domain of thex variables,
but it is not required for convergence. If the variable domain reduction techniques
are not used, X0 = X1 = X2 � � �.

5. Convergence Proof

LetZa be the set of accumulation points of zk, and letZ� be the argmin(x;y)2D f(x; y).

THEOREM 1. If a reduced space branch and bound algorithm satisfying the fol-
lowing conditions
1. the subdivision of partition sets in step 7 is exhaustive on Y
2. the selection of elements to be partitioned in step 7 is bound improving
3. the convex subfunctionals, �f and �h, used in problem P2 are strongly consistent

on Y

jogo384.tex; 7/08/1997; 12:45; v.7; p.8

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 295

is applied to problems in the form P1 with D 6= ;, then an infinite application of
the algorithm will produce
1. � := lim

k!1
�k = min

(x;y)2D
f(x; y)

2. Za � Z�

Proof. For every iteration, k = 0; 1; 2; . . ., of the algorithm, by design the
following is true

�k � min
(x;y)2D

f(x; y); (32)

Mk 2 argmin
M2Mk

�(M); (33)

(xk; yk) = zk 2 z(Mk): (34)

Horst [6] gives thatf�kg is a nondecreasing sequence bounded above by min(x;y)2D
f(x; y), which guarantees the existence of the limit

� := lim
k!1

�k � min
(x;y)2D

f(x; y): (35)

fzkg is a sequence on a compact set, therefore, it has a convergent subsequence.
For any (�x; �y) = �z 2 Za, there exists a subsequence fzrg of fzkg with

lim
r!1

zr = �z: (36)

From properties 1 and 2, we have based on previous work [5], there exists a
decreasing subsequence Yq � Yr where Yr is the Y space of the partition Mr with

yq 2 Yq; (37)

(xq; yq) 2 Mq; (38)

�q = �(Mq) = �f q(xq; yq); (39)

lim
q!1

yq = f�yg: (40)

By property 3, it follows that

lim
q!1

�q = � = f(�x; �y): (41)

All that remains is to prove that (�x; �y) 2 D. X and Y are closed sets, so (�x; �y) 2
X � Y . The remainder of the proof will be by contradiction.

Assume (�x; �y) 62 D, then

maxfmax
i
gi(�x; �y);max

j
hj(�x; �y)g = � > 0: (42)

There are two cases, either gi(�x; �y) = � > 0 for some i or hj(�x; �y) = � > 0
for some j. Consider the first case, gi is convex and hence continuous; therefore,
the sequence fgi(xq; yq)g converges to gi(�x; �y). By definition of convergence,

jogo384.tex; 7/08/1997; 12:45; v.7; p.9

296 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

9 q� such that q > q� ! jgi(x
q; yq) � gi(�x; �y)j < �. Therefore for q > q� ,

gi(x
q; yq) > 0 implying that P2 is infeasible and violating the assumption that

(xq; yq) = zq = z(Mq).
The second case is that hj(�x; �y) = � > 0 for some j. From the property 3, the

sequence f�hqj(x
q; yq)g converges to hj(�x; �y). By a similar argument, 9 q� such

that q > q� ! �hqj(x
q; yq) > 0 implying that P2 is infeasible. Both cases result in a

contradiction, therefore (�x; �y) 2 D.

� = f(�x; �y) = min(x;y)2D f(x; y) (43)

(�x; �y) 2 Z� (44)

E

6. Examples

We have chosen three examples to illustrate the breadth of problems to which the
reduced space algorithm may be applied and to demonstrate how branching in
the reduced space can dramatically decrease the runtime and number of iterations
required to converge to a given tolerance. In each example, the dimension of y is
much less than the dimension of x, which is the case where this approach is most
effective. Before the examples and results are presented, we provide a description
of our test program.

6.1. IMPLEMENTATION DETAILS

Branching in the reduced space can be used with any algorithm satisfying the
general description provided above. For the sake of testing, we implemented a
branch and bound algorithm in C ++ on a 50MHz Sun SPARC 10. The program reads
in a problem description file, automatically determines the minimal set of variables
that require branching using the proposed algorithm in the appendix, solves the
problem, and outputs the results. When testing with full space branching, the second
step is skipped; all other aspects of the algorithm are kept constant between the
two modes.

There are many important details that go into the implementation of an algorithm
of the form given above. Only the most crucial aspects of the algorithm will be
described here. Optional steps 1, 3 and 8.1 are omitted, and the number of variable
domain reductions per main loop iteration in step 8.3 is limited to four.

The LP and/or NLP subproblems generated by the program in steps 5 and 8.2
use the convex/concave envelopes as presented by McCormick [11] to provide the
lower bounding relaxations, and they are solved with direct calls to MINOS 5.5
[12] using warm or hot starts when possible. In step 5, MINOS 5.5 is applied to
the original problem P1 to search for local minima. The program solves P1 each
main loop iteration until it finds a local minimum, and afterwards, it solves P1 with

jogo384.tex; 7/08/1997; 12:45; v.7; p.10

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 297

decreasing frequency. The underestimating program solved in step 8.2 is equivalent
to P2; no additional constraints are used. In step 8.3, active variable bounds are
used to reduce the variable domain according to the methods of Ryoo and Sahinidis
[19].

The last crucial detail of the implementation is the splitting strategy employed.
In step 7, the region with the least lower bound is split into two subrectangles.
The splitting process works in two steps: choosing which variable to split on and
choosing where to split. Before entering step 7, the program solved the relaxation
P2 for the region to be split. The relaxation provides a point and estimates of the
nonconvex terms. The variable is chosen to maximize the difference between the
estimate of a nonconvex term and the actual value of the nonconvex term at the
relaxation solution. The choice of variable is restricted to the reduced space unless
the full space option is requested.

Assume that i is the index of the chosen variable. IfF k, the set of known feasible
points, is not empty, bk is the best known feasible solution. yk is the solution of
the relaxed problem if available. Here is the algorithm used to determine the split
location:

ALGORITHM 2. Method for choosing a split location

IF (F k 6= ;) THEN
IF (bki 2 interior([yk

i
+ �0:6; �yki � �0:6])) THEN Split at bki

ELSE
lowerCloser := jbki � yk

i
j � jbki � �yki j

IF (No Relaxed Solution) THEN
IF (lowerCloser) THEN Split at 0:1�yki + 0:9yk

i

ELSE Split at 0:9�yki + 0:1yk
i

ELSE
IF (lowerCloser) THEN
yki := maxfyki ; y

k
i
+ 0:01(�yki � yk

i
)g

yki := minfyki ; �y
k
i � 0:05(�yki � yk

i
)g

ELSE
yki := maxfyki ; y

k
i
+ 0:05(�yki � yk

i
)g

yki := minfyki ; �y
k
i � 0:01(�yki � yk

i
)g

END
Split at yki

END
END

ELSE
IF (No Relaxed Solution) THEN

Split at (yk
i
+ �yki)=2

ELSE
yki := maxfyki ; y

k
i
+ 0:05(�yki � yk

i
)g

jogo384.tex; 7/08/1997; 12:45; v.7; p.11

298 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

yki := minfyki ; �y
k
i � 0:05(�yki � yk

i
)g

Split at yki
END

END

� is small positive number which indicates machine precision. This splitting
procedure guarantees that the width of the intervals produced are bounded above
by either (�yki � yk

i
� �0:6) (case i) or by 0:99(�yki � yk

i
) (case ii). In an infinite

application of branching procedure to variable i, case i can only apply a finite
number of times. Let j be the index of the last time that case i applied. For all
remaining elements in the infinite sequence, 0 � �yli � yl

i
� 0:99l�j(�yji � yj

i
).

liml!1(�yli � yl
i
) = 0.

A relative tolerance of 0.0001 was used as the termination criteria for all the
examples. The algorithm also terminates if a time limit of 100000 CPU seconds
or an iteration of 1000000 is exceeded. The first two examples were solved to
tolerance using both full and reduced space modes, and the last example was
solved to tolerance only in the reduced space mode.

6.2. BILINEAR EXAMPLE

This randomly generated problem has a linear objective function, ten linear con-
straints and twenty bilinear constraints. It has twenty-three variables of which only
three need branching with the reduced space algorithm.

min
x;y

cT
�
x

y

�
(45)

s.t. A

�
x

y

�
� b (46)

20X
i=1

3X
j=1

Bkijxiyj � dk ; k = 1; . . . ; 20 (47)

�2 � yj � 2 ; j = 1; . . . ; 3 (48)

�2 � xi � 2 ; i = 1; . . . ; 20 (49)

with

c 2 R23

A 2 R10�23

B 2 R20�20�3

Tables IV, V, VI, and VII, appearing in the appendix, provide the nonzero elements
of c, d, A, and B respectively.

The algorithm statistics comparing the reduced space and full space modes are
shown in Table I. Both versions of the algorithm locate the same global minimum

jogo384.tex; 7/08/1997; 12:45; v.7; p.12

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 299

in an acceptable amount of time; however, the reduced space version uses much
fewer iterations and much less CPU time. In the process of solving this problem,
three local minima were located by MINOS of which two are not global minima.
The objective function values of these local minima are -15.2843, -17.6430, and
-20.8008. The number of relaxed problems is higher than the number of branch
and bound iterations because the relaxed problem is resolved with a hot start after a
variable domain reduction. The full space algorithm requires approximately eight
times the CPU time and five times the number of iterations required by the reduced
space algorithm.

Table I. Algorithm statistics for example one

CPU Relaxations Original NLPs
Space Iterations time (s) solved solved

Reduced 995 184.9 1472 34
Full 5157 1415.3 5961 79

6.3. PRODUCTS OF CONVEX AND LINEAR FUNCTIONS

The second example involves minimizing a convex objective function subject to
constraints involving products of convex and linear functions. It is a small and
simplified version of the formulation for batch reactor design under uncertainty
developed by Ierapetritou and Pistikopoulos [9]. The problem has thirty-seven
variables of which only two need branching with the reduced space algorithm.
There are six linear constraints and sixteen nonconvex constraints. The problem
has at least one non-global local minimum.

min
x;y

3X
j=1

3 exp(0:6xj) + cT
�
x

y

�
(50)

s.t. xj � yi � log(Sij) ; i = f1; 2g; j = f1; 2; 3g (51)
2X
i=1

x(3+2j+i) exp(ti � yi) � 8 ; j = f0; . . . ; 15g (52)

x � x � �x (53)

y � y � �y (54)

with

S =

�
2 3 4
4 6 3

�
(55)

t =

�
2:995732273553991
2:772588722239781

�
(56)

The variable bounds and objective function coefficients are presented in Table VIII.

jogo384.tex; 7/08/1997; 12:45; v.7; p.13

300 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Both versions find the same solution to this example, but the difference in time
required for solution between the two versions is larger than example one. Table II
shows the statistics for the two algorithms. The reduced space algorithm is faster
than the full space algorithm by two orders of magnitude in CPU time, and it
requires three orders of magnitude less iterations than the full space algorithm.

Table II. Algorithm statistics for example two

CPU Relaxations Original NLPs
Space Iterations time (s) solved solved

Reduced 25 9.87 31 5
Full 30789 6489.23 54174 176

6.4. PRODUCTS OF NONCONVEX AND CONVEX FUNCTIONS

The third example problem has a linear objective function, one linear constraint, and
one nonconvex constraint involving the products of nonconvex, cubic functions
and convex quadratic functions. The objective function coefficients for x were
randomly determined, and the objective function coefficients for y were chosen.
The constraints were chosen to give a nontrivial problem involving products of
nonconvex and convex functions. The problem has twenty-three variables of which
three require branching in the reduced space algorithm, and it has at least two non-
global local minima.

min
x;y

cT
�
y

x

�
(57)

s.t.
8X
i=1

(0:1y3
1 � 0:2y2

1 + 0:01y1 + 10)0:5x2
i +

16X
i=9

(0:1y3
2 � 0:2y2

2 + 0:01y2 + 10)0:5x2
i +

20X
i=16

(0:1y3
3 � 0:2y2

3 + 0:01y3 + 10)0:5x2
i � 250

(58)

y1 + y2 + y3 = 0:5 (59)

�2 � yi � 2 ; i = f1; 2; 3g (60)

0 � xi � 10 ; i = f1; . . . ; 20g (61)

The objective function coefficients appear in Table IX contained in the appendix.
The reduced space algorithm was able to find the global minimum to the spec-

ified tolerance within an acceptable amount of time, but the full space algorithm

jogo384.tex; 7/08/1997; 12:45; v.7; p.14

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 301

exceeded the CPU time limit of 100000 CPU seconds. Table III shows the iterations
required for the reduced space algorithm to converge to the specified tolerance, and
for the full space algorithm, it shows the tolerance achieved within the CPU time
limit. The reduced space algorithm requires only 4.664 CPU minutes, and the full
space algorithm used over 27.77 CPU hours without converging.

Table III. Algorithm statistics for example three

CPU Relaxations Original NLPs
Space Iterations time (s) solved solved Tolerance

Reduced 433 280 529 21 1:0� 10�4

Full 127328 100000 130730 462 2:3� 10�3

7. Conclusions

These examples demonstrate that the reduced space branch and bound algorithm
can provide a dramatic reduction in the CPU time required to solve problems to
finite tolerance whenN �M , and the proofs given provide for exact convergence
in the infinite limit. The examples also demonstrate some of the breadth of problems
to which this technique can be applied.

Branching in a reduced space can be incorporated easily into existing branch
and bound algorithms. The variables can be partitioned automatically or manually
into subsets x and y, and existing programs can use them by forbidding branches
on variables in x.

Appendix

A. Automatic partitioning of variables

In this appendix, a proposed algorithm is presented to automatically determine the
minimum set of variables, Y , that require branching for problems presented in the
following factorable form:

zj = xj ; j = 1; . . . ; n (62)

zj =
j�1X
i=1

0
@cji zi + �

j
i (zi) +

j�1X
k=1

B
j
ikzizk

1
A ; j = n+ 1; . . . ; N (63)

Some of the elements of z are just intermediate variables added to put the problem
in factorable form, but others are function values that are constrained by some lower
or upper bound, zL or zU respectively. If zj is an intermediate value, zLj = �1

and zUj = 1; otherwise, at least one of the bounds is finite. In a sparse problem,

most of the elements of each cj and Bj are zero, and many of the functions �ji (�)
are functions whose value is always zero.

jogo384.tex; 7/08/1997; 12:45; v.7; p.15

302 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Let Ij be the set of variables incident on the expression for zj .

Ij := fi 2 1; . . . ; j � 1 : cji 6= 0j�ji (�) 6= 0j9k with (Bj
ik 6= 0jBj

ki 6= 0)g

It is also useful to define the BaseVars(j) function that determines the set of original
variables on which the value of zj depends.

BaseVars(j) :=

8<
:
fxjg for j � n[
i2Ij

BaseVars(i) otherwise (64)

The assumptions of this work provide that all original variables have finite
lower and upper bounds, x and �x respectively. Lower and upper bounds for z, z
and �z respectively, are determined using existing interval mathematics techniques
[15]. In addition to being able to provide bounds for z, it must be possible to
determine whether each of the single variable functions � is convex, concave, both,
or neither over a specified domain. Let the following functions return a boolean
value indicating whether the function has the indicated curvature over the domain
[zi; �zi].

Concave(�ji ; zi; �zi) :=

(
TRUE if �ji is concave on [zi; �zi]
FALSE otherwise

(65)

Convex(�ji ; zi; �zi) :=

(
TRUE if �ji is convex on [zi; �zi]
FALSE otherwise

(66)

The algorithm is presented as three subroutines and a main driver. The purpose
of the first two subroutines is to check a particular line of the formulation for
the indicated curvature and to add variables to Y to guarantee that the specified
envelope becomes tight in the infinite limit. These subroutines also accumulate the
set of bilinear interactions in A. Each element of A is an ordered pair of nonempty
sets (L;R) where L is the set of variables appearing on the left hand side of a
multiplication and R is the set of variables appearing on the right hand side. The
third subroutine is used to choose which side of a bilinearity should be added to Y .
These subroutines are directed by the main driver.

ALGORITHM 3. Subroutine to ensure a tight convex envelope

This subroutine examines the expression for zj . It adds variables to Y that are
necessary for zj to have a tight convex envelope in the infinite limit, and it records
the bilinear interactions between variables set A.

RequireConvex(integer j)
IF (j > n) THEN

FOR i := 1 TO j � 1 BEGIN

jogo384.tex; 7/08/1997; 12:45; v.7; p.16

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 303

IF (cji > 0) RequireConvex(i)
IF (cji < 0) RequireConcave(i)
IF (:Convex(�ji ; zi; �zi)) Y := Y [BaseVars(zi)
ELSE RequireConvex(i)
IF (Bj

ii > 0) RequireConvex(i)
IF (Bj

ii < 0) Y := Y [BaseVars(zi)
FOR k := 1 TO j � 1 BEGIN

IF (i 6= k ^B
j
ik 6= 0) THEN

A := A [(BaseVars(i);BaseVars(k))
Y := Y [(BaseVars(i) \ BaseVars(k))
IF (Bj

ik > 0) THEN
IF (�zk > 0) RequireConvex(i)
IF (zk < 0) RequireConcave(i)
IF (�zi > 0) RequireConvex(k)
IF (zi < 0) RequireConcave(k)

ELSE
IF (�zk > 0) RequireConcave(i)
IF (zk < 0) RequireConvex(i)
IF (�zi > 0) RequireConcave(k)
IF (zi < 0) RequireConvex(k)

END
END

END
END

END

ALGORITHM 4. Subroutine to ensure a tight concave envelope

This is the analogous subroutine for ensuring a tight concave envelope.

RequireConcave(integer j)
IF (j > n) THEN

FOR i := 1 TO j � 1 BEGIN
IF (cji > 0) RequireConcave(i)
IF (cji < 0) RequireConvex(i)
IF (:Concave(�ji ; zi; �zi)) Y := Y [BaseVars(zi)
ELSE RequireConcave(i)
IF (Bj

ii > 0) Y := Y [BaseVars(zi)
IF (Bj

ii < 0) RequireConcave(i)
FOR k := 1 TO j � 1 BEGIN

IF (i 6= k ^B
j
ik 6= 0) THEN

A := A [(BaseVars(i);BaseVars(k))

jogo384.tex; 7/08/1997; 12:45; v.7; p.17

304 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Y := Y [(BaseVars(i) \ BaseVars(k))
IF (Bj

ik < 0) THEN
IF (�zk > 0) RequireConvex(i)
IF (zk < 0) RequireConcave(i)
IF (�zi > 0) RequireConvex(k)
IF (zi < 0) RequireConcave(k)

ELSE
IF (�zk > 0) RequireConcave(i)
IF (zk < 0) RequireConvex(i)
IF (�zi > 0) RequireConcave(k)
IF (zi < 0) RequireConvex(k)

END
END

END
END

END

ALGORITHM 5. Subroutine to choose which side of a bilinear interaction to add
to Y

This subroutine decides which variables in a bilinear interaction of the variables
inL on the left hand side and variables inR on the right hand side. For the envelope
to be tight in the limit, all the variables from one side must be in Y . It chooses
the side whose variables not already in Y are linked to most other variables. This
choice results in the minimum number of variables being added to Y .

set ResolveBilinear(set L, set R)
L0 := L n Y

R0 := R n Y

IF (L0 = ; _R0 = ;) RETURN ;

L� := fxi : 9a 2 L0;9(b; c) 2 A; (xi 2 b ^ a 2 c) _ (a 2 b ^ xi 2 c)g n L0

R� := fxi : 9a 2 R0;9(b; c) 2 A; (xi 2 b ^ a 2 c) _ (a 2 b ^ xi 2 c)g n R0

IF (jL�j � jR�j) RETURN L0

ELSE RETURN R0

ALGORITHM 6. Main driver to determine branching variables

When an element of z has a finite upper bound, it requires a tight convex
envelope in the relaxation, and likewise when an element of z has a finite lower
bound, it requires a tight concave envelope. The main driver makes the necessary
additions to Y to provide the necessary tight envelopes for all the constrained
elements of Y .

The driver has two main phases. In the first phase, variables are added to Y

based on their role in squared terms and � while accumulating information about

jogo384.tex; 7/08/1997; 12:45; v.7; p.18

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 305

the bilinear interactions. In the second phase, the bilinear interactions are resolved.
The elements of A must be processed in order of increasing size where the size of
an element of A is defined as the maximum of the cardinality of its two component
sets. When the argmin used in the algorithm below has more than one element,
choose any member.

A := ;

Y := ;

FOR j := n+ 1 TO N BEGIN
IF (zUj <1) RequireConvex(j)
IF (zLj > �1) RequireConcave(j)

END
WHILE A 6= ; BEGIN

(L;R) 2 argmin(a;b)2A maxfjaj; jbjg
Y := Y [ChooseBilinear(L,R)
A := A n f(L;R)g

END

At the end of the main driver, Y contains the set of variables which require
branching.

B. Coefficients for example problems

Table IV. Objective function coefficients for example one

i ci i ci i ci i ci

1 -1.066890 7 0.5149100 13 -0.2178510 19 -1.5776400
2 1.334450 8 1.6398600 14 1.0153500 20 0.0811166
3 -1.224840 9 0.0678508 15 0.0649806 21 0.0529182
4 -0.534849 10 -0.4161970 16 -1.1314100 22 1.6965300
5 -1.426790 11 0.5154940 17 1.8142800 23 -0.4532200
6 -0.234014 12 -0.0328012 18 -1.8519400

jogo384.tex; 7/08/1997; 12:45; v.7; p.19

306 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Table V. Right hand sides for example one

i bi k dk k dk

1 1.0498000 1 -1.4089100 11 0.690719
2 -0.9275090 2 1.7586000 12 1.849930
3 -0.0207621 3 1.6076600 13 -0.281364
4 0.5252870 4 0.5655480 14 1.373770
5 -0.1074780 5 1.5045800 15 0.536129
6 1.0312700 6 -1.4236300 16 1.664650
7 0.3278110 7 0.0323101 17 1.084130
8 -1.6362600 8 -1.9086900 18 0.784348
9 1.0860800 9 0.7539460 19 0.618497

10 -1.8557600 10 1.1442900 20 -1.841670

Table VI. Nonzero elements of A for example one

i j Aij i j Aij i j Aij

1 1 0.791494 4 22 -0.6831560 8 13 -0.6074750
1 7 1.028900 5 2 1.2722000 8 18 2.3017330
1 12 1.253470 5 9 0.8997950 8 22 1.2365400
1 19 1.196050 5 12 -0.0921251 9 1 1.5216300
2 2 0.316459 5 20 1.3299400 9 9 0.0291254
2 7 -0.767426 6 9 1.2999700 9 11 1.3245300
2 9 -0.319650 6 13 0.1536300 9 18 -1.5178200
3 9 -1.808227 6 15 -1.9864000 10 7 -1.6190100
3 21 0.573109 6 20 -1.8752800 10 10 0.3279450
3 23 1.953350 7 8 -1.1367900 10 11 1.7859800
4 12 -0.746296 7 12 0.4287280 10 22 1.4543600
4 15 -0.650458 7 16 -0.7282910
4 19 1.764980 7 18 -1.8227200

jogo384.tex; 7/08/1997; 12:45; v.7; p.20

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 307

Table VII. Nonzero elements of B for example one

k i j Bkij k i j Bkij k i j Bkij

1 2 3 0.5998530 6 3 3 -1.245270 14 6 2 0.8437320
1 4 2 1.1618200 6 4 2 1.070480 15 17 2 -1.5720900
1 10 2 0.0968363 6 8 2 1.481690 15 17 3 1.1675800
1 11 1 0.5953090 7 11 1 -0.738157 15 18 1 -1.2703200
1 12 2 0.0157741 7 15 2 -1.998290 15 20 1 -0.1026120
1 16 2 -0.3495940 8 3 1 0.660109 16 7 1 1.4422200
2 3 2 1.5343800 8 13 2 0.297381 16 14 2 1.4503700
2 8 1 0.6215500 8 15 1 0.753913 17 3 2 -1.1957700
2 10 1 1.8293700 9 1 3 -1.704470 17 6 2 1.5247900
2 16 2 -1.1923600 9 6 2 -0.489378 17 7 2 0.7601060
3 5 1 1.6885800 9 15 2 -0.588499 17 18 1 -0.7240830
3 6 2 1.0501500 10 11 2 -1.113930 18 9 3 -1.8605100
3 16 3 0.0280099 11 3 1 1.192800 18 13 3 -1.0674200
3 17 1 -0.1299910 11 10 3 1.908350 19 16 1 -1.9499800
4 4 1 0.4644940 11 13 2 -1.028490 19 20 3 -1.3409600
4 9 3 -1.0991400 11 14 2 1.395810 20 2 1 -1.8119700
4 11 3 1.2386100 12 18 3 -1.569720 20 7 1 -1.1783800
4 19 2 -0.3364220 13 5 2 -0.535376 20 9 2 0.7480300
4 19 3 0.9405890 13 12 1 0.939518 20 12 2 1.4576600
5 10 2 -1.5426700 13 15 2 -1.577420 20 17 3 -0.0330721
5 18 1 1.5738700 14 1 1 -2.771270

jogo384.tex; 7/08/1997; 12:45; v.7; p.21

308 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Table VIII. Variable table for example two

Var. Lower bound Upper bound Objective coef.

y1 4.828313737302301 7.025538314638521 0
y2 4.422848629194137 6.620073206530357 0
x1 6.214608098422191 8.411832675758411 0
x2 6.214608098422191 8.411832675758411 0
x3 6.214608098422191 8.411832675758411 0
x4 0 165.5545475362379 1.191905471317204�10�5

x5 0 65.55454753623789 1.51697059985826�10�5

x6 0 186.4007582566057 0.003342149157327824
x7 0 65.55454753623789 0.004253644382053594
x8 0 213.5992417433942 0.003342149157327824
x9 0 65.55454753623789 0.004253644382053594
x10 0 234.4454524637621 1.191905471317204�10�5

x11 0 65.55454753623789 1.51697059985826�10�5

x12 0 165.5545475362379 0.003342149157327824
x13 0 86.40075825660574 0.004253644382053594
x14 0 186.4007582566057 0.9371515827914514
x15 0 86.40075825660574 1.192738378098211
x16 0 213.5992417433942 0.9371515827914514
x17 0 86.40075825660574 1.192738378098211
x18 0 234.4454524637621 0.003342149157327824
x19 0 86.40075825660574 0.004253644382053594
x20 0 165.5545475362379 0.00334214915732783
x21 0 113.5992417433942 0.004253644382053602
x22 0 186.4007582566057 0.9371515827914529
x23 0 113.5992417433942 1.192738378098213
x24 0 213.5992417433942 0.9371515827914529
x25 0 113.5992417433942 1.192738378098213
x26 0 234.4454524637621 0.00334214915732783
x27 0 113.5992417433942 0.004253644382053602
x28 0 165.5545475362379 1.191905471317204�10�5

x29 0 134.4454524637621 1.51697059985826�10�5

x30 0 186.4007582566057 0.003342149157327824
x31 0 134.4454524637621 0.004253644382053594
x32 0 213.5992417433942 0.003342149157327824
x33 0 134.4454524637621 0.004253644382053594
x34 0 234.4454524637621 1.191905471317204�10�5

x35 0 134.4454524637621 1.51697059985826�10�5

jogo384.tex; 7/08/1997; 12:45; v.7; p.22

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 309

Table IX. Objective coefficients for example three

Var. Coef. Var. Coef. Var. Coef.

y1 -0.4000 x6 -0.9196 x14 -0.0108
y2 -0.5000 x7 -0.2165 x15 -0.8976
y3 -0.6000 x8 -0.0944 x16 -0.8341
x1 -0.4239 x9 -0.8582 x17 -0.7077
x2 -0.9664 x10 -0.0174 x18 -0.6108
x3 -0.4955 x11 -0.6566 x19 -0.7102
x4 -0.8139 x12 -0.2996 x20 -0.2678
x5 -0.8432 x13 -0.2621

C. Solution for example problems

Table X. Solution of example one

Var. Value Var. Value Var. Value

y1 -0.6032 x6 0.1085 x14 -1.2352
y2 -1.9003 x7 2.0000 x15 -0.0395
y3 2.0000 x8 -2.0000 x16 0.0899
x1 0.9258 x9 -0.4036 x17 -2.0000
x2 1.4371 x10 -1.5271 x18 -0.5893
x3 2.0000 x11 -2.0000 x19 -2.0000
x4 1.8715 x12 2.0000 x20 -0.2627
x5 -1.6586 x13 2.0000 Objective -20.8008

jogo384.tex; 7/08/1997; 12:45; v.7; p.23

310 T.G.W. EPPERLY AND E.N. PISTIKOPOULOS

Table XI. Solution of example two

Var. Value Var. Value Var. Value

y1 6.7795 x12 165.56 x25 86.40
y2 6.0863 x13 86.40 x26 234.46
x1 7.4726 x14 186.40 x27 73.37
x2 7.8781 x15 86.40 x28 165.56
x3 8.1658 x16 213.60 x29 116.43
x4 165.56 x17 86.40 x30 186.40
x5 65.55 x18 234.46 x31 103.40
x6 186.40 x19 73.37 x32 213.60
x7 65.55 x20 165.56 x33 86.40
x8 213.60 x21 113.60 x34 234.46
x9 65.55 x22 186.40 x35 73.37
x10 234.46 x23 103.40 Objective -183.29
x11 65.55 x24 213.60

Table XII. Solution of example three

Var. Value Var. Value Var. Value

y1 -2.0000 x6 2.6414 x14 0.0261
y2 0.6019 x7 0.6219 x15 2.1703
y3 1.8981 x8 0.2712 x16 2.0167
x1 1.2176 x9 2.0750 x17 1.7065
x2 2.7759 x10 0.0421 x18 1.4728
x3 1.4233 x11 1.5876 x19 1.7125
x4 2.3378 x12 0.7244 x20 0.6458
x5 2.4220 x13 0.6337 Objective -21.412

jogo384.tex; 7/08/1997; 12:45; v.7; p.24

REDUCED SPACE BRANCH AND BOUND ALGORITHM FOR GLOBAL OPTIMIZATION 311

References

1. F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics of
Operations Research, 8(2):273–286, 1983.

2. I. P. Androulakis, C. D. Maranas, and C. A. Floudas. �BB: A global optimization method for
general constrainted nonconvex problems. Journal of Global Optimization, 7(4):337–363, 1995.

3. T. G. W. Epperly and R. E. Swaney. Branch and bound for global NLP: New bounding LP.
In Ignacio E. Grossmann (ed.), Global Optimization in Engineering Design, chapter 1. Kluwer,
1996.

4. J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming problems.
Management Science, 15(9):550–569, 1969.

5. R. Horst. An algorithm for nonconvex programming. Mathematical Programming, 10:312–321,
1976.

6. R. Horst. Deterministic global optimization with partition sets whose feasibility is not known:
Application to concave minimization, reverse convex constraints, DC-programming, and Lips-
chitzian optimization. Journal of Optimization Theory and Application, 58(1):11–37, 1988.

7. R. Horst and N. V. Thoai. Conical algorithm for the global minimization of linearly constrained
decomposable concave minimization problems. Journal of Optimization Theory and Applica-
tions, 74(3):469–486, 1992.

8. R. Horst and N. V. Thoai. Constraint decomposition algorithms in global optimization. Journal
of Global Optimization, 5:333–348, 1994.

9. M. G. Ierapetritou and E. N. Pistikopoulos. Batch plant design and operations under uncertainty.
Industrial & Engineering Chemistry Research, 35(2):772–787, 1996.

10. G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I
— Convex underestimating problems. Mathematical Programming, 10:147–175, 1976.

11. G. P. McCormick. Nonlinear Programming, Theory, Algorithms, and Applications. John Wiley
& Sons, 1983.

12. B. A. Murtagh and M. A. Saunders. MINOS 5.1 user’s guide. Technical Report SOL 83-20R,
Systems Optimization Laboratory, Stanford University, Stanford, CA 94305-4022, 1987.

13. L. D. Muu. An algorithm for solving convex programs with an additional convex-concave
constraint. Mathematical Programming, 61:75–87, 1993.

14. L. D. Muu and W. Oettli. Combined branch-and-bound and cutting plane methods for solving a
class of nonlinear programming problems. Journal of Global Optimization, 3:377–391, 1993.

15. A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, 1990.

16. A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave quadratic global
minimization. Mathematical Programming, 42:421–448, 1988.

17. T. Q. Phong, L. T. H. An, and P. D. Tao. Decomposition branch and bound method for globally
solving linearly constrained indefinite quadratic minimization problems. Operations Research
Letters, 17:215–220, 1995.

18. I. Quesada and I. E. Grossmann. A global optimization algorithm for linear fractional and bilinear
programs. Journal of Global Optimization, 6:39–76, 1995.

19. H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with
applications in process design. Computers and Chemical Engineering, 19(5):551–566, 1995.

20. H. D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear
programming problems. Journal of Global Optimization, 2:379–410, 1992.

21. H. D. Sherali and C. H. Tuncbilek. A global optimization algorithm for polynomial programming
problems using a reformulation-linearization technique. Journal of Global Optimization, 2:101–
112, 1992.

22. H. D. Sherali and C. H. Tuncbilek. A reformulation-convexification approach for solving
nonconvex quadratic programming problems. Journal of Global Optimization, 7:1–31, 1995.

23. E. M. B. Smith and C. C. Pantelides. Global optimization of general process models. In Ignacio E.
Grossmann, editor, Global Optimization in Engineering Design, chapter 12. Kluwer, 1996.

24. H. Tuy. Effect of the subdivision strategy on convergence and efficiency of some global opti-
mization algorithms. Journal of Global Optimization, 1(1):23–36, 1991.

jogo384.tex; 7/08/1997; 12:45; v.7; p.25

