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Abstract. A generd class of branch and bound agorithms for solving a wide class of nonlinear
programs with branching only in a subset of the problem variables is presented. By reducing the
dimension of the search space, this technique may dramatically reduce the number of iterations and
time required for convergence to e tolerance while retaining proven exact convergence in the infinite
limit. This presentation includes specifications of the class of nonlinear programs, a statement of a
class of branch and bound algorithms, a convergence proof, and motivating examples with results.
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1. Introduction

Onelineof development of branch and bound algorithmsinvolves solving aconvex
relaxation of the original problem to generatethelower bound. Thisapproach stems
from the work of Falk and Soland [4], Al-Khayyal and Falk [1], and McCormick
[10, 11] whereconvex envel opesare used to replace nonconvex termsin devel oping
the relaxation. Recent work in thisline of development has focused on developing
tighter constraintsin therel axation to produce higher lower bounds[2, 3, 18, 20, 21]
or on reducing the variable domain [19] with the overall goal of reducing the need
to branch. Branching is avoided because it involves the combinatorial search of
a multidimensional space, and the computational work can grow exponentially.
The reduced space algorithm presented below is intended to complement new or
existing global optimization algorithmsin thisline of devel opment by reducing the
dimension of the search space for awide class of problems.

Several other researchers have presented reduced space branch and bound algo-
rithms, but these algorithms require problems with special properties. Phillips and
Rosen [16] use branch and bound in a subset of the variable space in solving
minimizations of a concave quadratic function over a bounded polyhedral set.
Their algorithm branches only on the nonlinear variables, and it is able to solve
problems with numerous linear variables. Horst and Thoai [7] presented a conical
branch and bound algorithm for solving concave problemswith numerousvariables
appearing linearly. The dimension of the problem to be solved via the branch and
bound algorithm is only one dimension greater than the number of nonlinear vari-
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ables. Muu and Oettli [13, 14] present a combined branch and bound and cutting
plane algorithm to perform branch and bound in a subset of the problem variables.
Their algorithm can treat problems with convex-concave constraints. Sherali and
Alameddine[20] present abranch and bound algorithm based on the reformul ation-
linearization technique which has proven convergence for bilinear problems when
branching on asubset of the variables. They point out that the algorithm can branch
on the smaller of the two sets of variables. Horst and Thoai [8] present an algo-
rithm for d.c. programming problemsthat branchesin areduced space. Phong, An,
and Tao [17] present a reduced space branch and bound algorithm for indefinite
guadratic programs which branches only on the concave variables.

The reduced space algorithm presented below is applicable to sparse nonlinear
programs that can be expressed in factorable form, which includes most practical
problems [11]. Smith and Pantelides [23] present an algorithm for reformulating
expressions into the necessary form. Not all programs in factorable form will be
able to branch in a reduced space, but any problem in factorable form can be
quickly and automatically tested to seeif it can use areduced space.

Theclassof problemsthat can be solved in areduced spaceisdetailed in Section
1. Section 2 details the convex constraints that must be included in the convex
relaxation used to obtain the lower bound. The reduced space agorithm is given
in Section 3, and a convergence proof is provided in Section 4. Section 5 includes
a comparison of full and reduced space solutions of three example problems, and
Section 6 has some brief concluding remarks. The appendix contains a proposed
algorithm for determining the minimal set of branching variables and details of the
example problems.

2. Problem Definition

Consider the problem,

Problem (P1)
min - f(z,y) @
st. g(z,y) <0 ()
h(z,y) <0 3
reX (4)
yey ®)
with

X :=[z,7] C RN,Y := [y, 5] C RM
f:XxY >R g:XxY >R h:XxY — R

Equality constraints may be included in this framework as a pair of opposing
inequality constraints. In this formulation, the y variables require branching, and
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the z variables do not. A proposed algorithm to determine X and Y for a program
in factorable form isincluded in the appendix. To facilitate the presentation below,
D isintroduced as the feasible space of problem P1,

D= {(z,y) € X xY i g(z,y) <0,h(z,y) < O}. (6)

In order to guarantee convergence of the branch and bound algorithm while
branching only in the Y space, it is necessary to place some restrictions on the
functions f, g, and h. ¢ must be a convex function, and f and each element of
h must satisfy the conditions given below for function w. Let w be any element
of hor f,sow: X xY — R. Convergence can be established when w has the
following form:

w(z,y) )+ wf ) +w” (y) (7)
1€Q
where (Q is a set of indices indicating the bilinear interactions between functions
of z and functions of y. w” and w® must be convex, and w® and w” must be
continuous. Further conditions on w?, w?, w®, and w" are stated below after the
necessary terminology has been defined.
Itis assumed that z, 7, y, and y arefinite; thus, X and Y are compact sets that
can be thought of as NV and M dimensional rectangles. The partition sets used by
this algorithm are all rectangular and compact with

X* = [zF, 7N, (8)
Y= [y", 7" ©)
Tuy [24] showed that rectangular subdivisions are weakly exhaustive. Some defi-

nitions are required for the presentation of the underestimating program, algorithm
and proof.

DEFINITION 1. Given aset X x Y, the subdivision of partition setsof X x Y
is caled exhaustive on Y/, if it produces an infinite, nested sequence of partition
sets, {(X*,Y*)} and an associated sequence of diameters d(Y*) satisfying the
following:

(X%Y% > (xLyh oo (xhYH (10)
Jim d(Y¥) =0 (11)
kIer;on = DY’“ = {y}. (12)

This definition is an extension of Horst’s [6] whose definition is recovered when
X isempty in which case the subdivision isjust called exhaustive.

DEFINITION 2. A convex underestimator of afunction ¢(y) over the domain Y*
is a convex function denoted ¢* (1) satisfying

(y) < ply) Yyevh (13)
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DEFINITION 3. A concave overestimator of afunction ¢(y) over the domain Y*
is a concave function denoted @* (y) satisfying

P'(y) > ply) VyeY". (14)
DEFINITION 4. Given a sequence of partition sets {(X*,Y*)} produced by a

subdivision of X x Y that is exhaustive on Y with Y* 2 {y}, acorresponding
—00

sequence {y*} with ¥ € Y*, and a corresponding sequence {z*} with z* € Xx*
with {z¥} — 2, a convex underestimator or concave overestimator is strongly
consistenton Y if there exist subsequences{(X?,Y7)}, {y?}, and {z?} satisfying

A (pd 4,4 Y
Plat,yt) =2 eld,g) or (15)
(44 oy
Pl y") =z eld,g). (16)

When X is vacuous, a convex underestimator or concave overestimator is called
simply strongly consistent.

DEFINITION 5. A function, ¢, hastight boundsif onecan provide upper and lower
bounds, ¢* and ¢* respectively, for any subrectangle Y* of Y such that for any

infinite sequence, {Y*}, produced by an exhaustive subdivision with Y% — {5},
o < oly) <@ wyeYh (17)

lim o* = lim @* = ¢(y). (18)
k—o00— k—o0
A function, ¢ has continuous tight bounds if ¢* and ¢* are continuous functions
of y* and .

Having defined these concepts and notation, the sufficient criteria for conver-
genceof thealgorithmisthat f and h have convex underestimatorsthat are strongly
consistent on Y. Such convex underestimators are available when w satisfies the
following formal conditions:

ConditionsW
1. w”, w® are convex
w®, w” are continuous
. strongly consistent, convex underestimators are available for w® and w?”
. strongly consistent, concave overestimators are available for w® and w?
w?B, w’, wP have continuous tight bounds
. Foreach i € @), at least one of the following two conditions must hold
(@ wB(z) := c'Tz for some congtant ¢! € RV
(b) w(y) > Oforal y € Y; hence, wf* > 0

oOUAWN
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Thefollowing examples demonstrate some of the breadth of this class of functions:
.= 21z +y' By,
T T T
w(z,y) =z z+x Ay +y By,
w(z,y) = c'z+ Y xFexp(y:).
i

=4

8

<
i

Given convex underestimators for f and h, the following convex nonlinear
program is used to provide lower bounds and to test the feasibility of a partition
Set.

Problem (P2)
min - f*(z,y) (19)
st. g(z,y) <0 (20)
i¥(z,y) <0 (21)
z e X* (22)
yeYk (23)

Based on the definition of convex underestimators, every feasible point of P1
in the subdomain X* x Y* isfeasible in P2; and the objective of P2 is less than
or equal to that of P1 for all pointsin X* x Y*. Thus, P2 provides a valid lower
bound for the solution of P1 over the partition set X* and Y'*. It should be noted
that problem P2 contains only the necessary constraints to guarantee convergence
of the algorithm. If available, one may add tighter bounding constraints to P2 such
as[2, 3, 18] aslong asthe constraints given in P2 remain.

3. Convex Underestimators

In this section, convex underestimators for f and h satisfying conditions W will
be provided and proven to be strongly consistent on Y. This proof establishes the
sufficient conditions for the underestimating program to guarantee convergence of
the algorithm given below for awide class of problems.

A convex underestimator of (7) is:

¥ (z,y) == w(z) + B7*(y) + D W (z,y) (24)
i€Q
with

Wik(xa y) =
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'nwx{w?hﬁ”@>+ufcww?k—wf%m%,}”Uﬁk>o
wPt b (y) + wp (@)wf* —wFef™ ) T
max { szszCk(y) + sz(x)a’zCk - win@_Ck, } if wB* <0 (25)
wProC* (y) + wp (2)w* — wPrw*
. { IR (y) + w (@)@ — wPeaCE, } I
\ wPFHEF(y) + wf (2)wf* — wPrw*

The proof that (24) is a convex underestimator of w follows from [10, 11],
and these references also provide a method for providing the strongly consistent,
convex underestimators and concave overestimators for the nonconvex functions
of ¢y. The convexity of (25) follows from the definitions of convex underestimators
and convex overestimators, property 6, and the fact that a maximum of two convex
functionsis convex. Each term of (24) is convex, so (24) is convex.

LEMMA 1. Given a function, w, in form (7) satisfying properties 1-6, then w
given by (24) is strongly consistenton Y.

Proof. The definition provides that there is a sequence of subrectangles
{(X*,Y*)} produced by a subdivision that is exhaustive on Y, a corresponding
sequence {y*} with ¥ € Y*, and a corresponding sequence {z*} with z* € Xx*
and z¥ — 4. From the definition of an exhaustive subdivision, we have that
Yk — {y}, and it follows that y* — 5. The upper and lower bounds on X* are
both sequences in a compact space, so there exists a convergent subseguence, so
X7 — X* = [z*,z*]. Corresponding to this subsequence, there is the sequence
{(29,2%,y%, 5% y",29)} — (z*,%%,9,9,9,). From properties 1-5, & can be
considered as a continuous function of (27, 7, y7, 47, y9, 29); therefore, the limit
of w7 asq — oo isjust w7 evaluated at the limiting val ues.

By property 3
. DAl T — Al Dy 00 (4
Jim (%, %) = w' () + w “’”%W’ (,9).
and applying properties 3 and 4 to W, equation (25) above with the limiting
values inserted.
Wi (@, 9) = wf (@)w (9)
which completes the requirements for a strongly consistent convex underestima-
tor. O

4. Algorithm

This description of ageneral class of branch and bound algorithmsis based largely
on the ideas of previousresearchers|[6, 11, 18, 19]. Here we present ageneral pur-
pose branch and bound a gorithm that includesbranching on asubset of thevariable
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domain explicitly. Steps marked as optional can be left out without effecting the
convergence proof that follows; in practice, they are helpful for some problems.
Let B(M*) or B(X*,Y¥) refer to the optimal objective function value of P2 for
the region M* = (X*,Y*) and z(M*) or z(X*,Y*) refer to an element of the
corresponding argmin.

ALGORITHM 1. Reduced space branch and bound algorithm

Initialization (iteration 0)

Sep 1.

Sep 2.

Sep 3.

Sep 4.

Sep 5.

Sep 6.

Sep 7.

Apply any finitemethodsto reducetheinitial variable domain sizewithout
removing a global optimum (e.g. see the preprocessing step [18]) to
produce X° C X andY° C Y. (optional)

Solve problem P2, 5o := B(X°,Y9), and 20 := 2(X9,Y?). If problem
P2 isinfeasible, stop; problem Pl isinfeasible.

Apply finite variable domain reduction techniques guaranteed not to
remove a global optimum [19, 22] to produce X% € X%and Y% C Y©.
If X £ X00r Y £ YO0 and the limit to the number of variable domain
reductions has not run out, X° := X% and Y° := Y repeat step 3;
otherwise, X0 := X% and Y° := Y7 (optional)

Initialize the iteration counter & := 1, the partition M, := {(X°,Y?)},
the upper bound g := oo, and the set of feasible points F° := (.

Main Loop (iterations1,2,...)

Apply some finite method to search for feasible points (potential optima)
of P1 such asapplying alocal NLP solver to P1. Let F' be the potentialy
empty set of feasible points located by this procedure, assign F* =
F U F*¥=1 This step need not be applied at every iteration of the main
loop once afeasible point has been found. If it is skipped, F* := F*—1,

o 1= zrgg,g f(2) (26)

If F* = (), define the best known feasible point

br = argrEinf(z). (27)
2€Fk

Remove elements of the current partition that cannot contain a solution

Ry ={MeM, ;:BM)<a}

Chooseanonempty collection P, C R;., and partition each element of P,
into subrectangles only branching in the Y space. Call the new partition
sets P
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Sep 8. For each P € P}, perform the following steps:

1. Apply finite variable domain reduction techniques guaranteed not to
remove aglobal optimum [19] to produce P* C P. Replace P € P}
with P*, and P := P*. (optional)

2. Solve P2 to obtain 5(P), if P2 isinfeasible or 5(P) > « remove
P from P/ and skip to next element of P;.

3. Apply finite variable domain reduction techniques guaranteed not to
remove aglobal optimum [19] to produce P* C P. Replace P € P}
with P*. (optional)

4. If the number of variable domain reductions allowed has not run out
and P* # P, set P := P* and return to step 2. (optional)

Sep 9. The partition set remaining is now
M, := (By, \ Py) U Py (28)
giving a new lower bound of

Bk := inf B(M). (29)

MeM,

If M, isempty, 8, = oo. For the sake of the convergence proof, if
M, # 0 thefollowing definitions apply

M;, € argming(M), (30)
MeM,,
2k = 2(My). (31)

Sep 10. If ap — B > O(> €), k := k + 1 and return to step 5; otherwise,
the problem is solved. If F* = (), the problem is infeasible; otherwise,
oy, = B isthe solution of P1, and b* is an optimal solution.

Thisagorithmincludesthe possibility of reducing thedomain of the z variables,
but it is not required for convergence. If the variable domain reduction techniques
arenot used, X0 = X1 = x?...

5. Convergence Proof

L et Z* betheset of accumulation pointsof ¥, andlet Z* betheargmi Neyyen f(@:y).

THEOREM 1. If a reduced space branch and bound algorithm satisfying the fol-
lowing conditions
1. the subdivision of partition setsin step 7 is exhaustiveon Y
2. the selection of elementsto be partitioned in step 7 is bound improving
3. the convex subfunctionals, f and /, used in problem P2 are strongly consi stent
onY
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is applied to problems in the form P1 with D # §), then an infinite application of
the algorithmwill produce
L g= lim f = (ITE)'QDf(m’y)
AVAN G /A
Proof. For every iteration, £ = 0,1,2,..., of the algorithm, by design the
following istrue

B < min_f(z,y), (32)
(z,y)eD

My, € %%TJHB(M), (33)

(z*,y") = 2F € 2(My). (34)

Horst[6] givesthat { 3, } isanondecreasing sequence bounded aboveby min, ,yc p
f(x,y), which guarantees the existence of the limit
=i < mi .
pi= lim f, < min f(z,y) (35)
{z*} is a sequence on a compact set, therefore, it has a convergent subsequence.
For any (#,7) = # € Z°, there exists asubsequence { 2"} of {z*} with
lim 2" = 2. (36)

r—0o0

From properties 1 and 2, we have based on previous work [5], there exists a
decreasing subsequence Y, C Y, where Y, isthe Y space of the partition M, with

y? ey, (37)
(z%,y%) € My, (38)
By = B(My) = f1(x",y"), (39)
Jim 7 = {g}. (40)
By property 3, it follows that
lim 8, =B = f(&,9). (41)

q—0

All that remainsisto provethat (z,y) € D. X andY are closed sets, so (i, 7) €
X x Y. Theremainder of the proof will be by contradiction.
Assume (%, 3) € D, then

max{max g; (Z, §), max h;(z, )} = ¢ > 0. (42)
? J
There are two cases, either g;(Z,9) = 6 > 0 for some i or hj(£,5) = ¢ > 0

for some j. Consider the first case, g; is convex and hence continuous; therefore,
the sequence {g;(z?,y?)} converges to g;(%,y). By definition of convergence,
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3 g5 such that ¢ > g5 — |gi(z9,y9) — gi(&,9)| < J. Therefore for ¢ > gs,
gi(x%,y%) > 0 implying that P2 is infeasible and violating the assumption that
(z9,y9) = 29 = z(M,).

The second case is that /;(#,y) = 6 > 0 for some j. From the property 3, the
sequence {h!(z9,y7)} converges to h;(i,7). By asimilar argument, 3 g such
that g > ¢5 — Bj(a:q,yq) > 0implying that P2 isinfeasible. Both casesresultin a
contradiction, therefore (,3) € D.

B=f(z9) = min(m,y)ED f(z,y) (43)
(#,9) € Z* (44)
O
6. Examples

We have chosen three examples to illustrate the breadth of problems to which the
reduced space algorithm may be applied and to demonstrate how branching in
the reduced space can dramatically decrease the runtime and number of iterations
required to converge to a given tolerance. In each example, the dimension of y is
much less than the dimension of z, which is the case where this approach is most
effective. Before the examples and results are presented, we provide a description
of our test program.

6.1. IMPLEMENTATION DETAILS

Branching in the reduced space can be used with any algorithm satisfying the
general description provided above. For the sake of testing, we implemented a
branch and bound algorithm in C ++ on a50MHz Sun SPARC 10. The program reads
in aproblem description file, automatically determinesthe minimal set of variables
that require branching using the proposed algorithm in the appendix, solves the
problem, and outputsthe results. When testing with full space branching, the second
step is skipped; all other aspects of the algorithm are kept constant between the
two modes.

Thereare many important detail sthat go into theimplementation of an algorithm
of the form given above. Only the most crucial aspects of the algorithm will be
described here. Optional steps 1, 3 and 8.1 are omitted, and the number of variable
domain reductions per main loop iteration in step 8.3 is limited to four.

The LP and/or NL P subproblems generated by the program in steps 5 and 8.2
use the convex/concave envelopes as presented by McCormick [11] to provide the
lower bounding relaxations, and they are solved with direct calls to MINOS 5.5
[12] using warm or hot starts when possible. In step 5, MINOS 5.5 is applied to
the original problem P1 to search for local minima. The program solves P1 each
main loop iteration until it findsalocal minimum, and afterwards, it solves P1 with
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decreasing frequency. The underestimating program solved in step 8.2 isequivalent
to P2; no additional constraints are used. In step 8.3, active variable bounds are
used to reduce the variable domain according to the methods of Ryoo and Sahinidis
[19].

Thelast crucial detail of the implementation is the splitting strategy employed.
In step 7, the region with the least lower bound is split into two subrectangles.
The splitting process works in two steps: choosing which variable to split on and
choosing where to split. Before entering step 7, the program solved the rel axation
P2 for the region to be split. The relaxation provides a point and estimates of the
nonconvex terms. The variable is chosen to maximize the difference between the
estimate of a nonconvex term and the actual value of the nonconvex term at the
relaxation solution. The choice of variableis restricted to the reduced space unless
the full space option is requested.

Assumethat i istheindex of the chosenvariable. If F'*, the set of knownfeasible
points, is not empty, b* is the best known feasible solution. * is the solution of
the relaxed problem if available. Here is the algorithm used to determine the split
location:

ALGORITHM 2. Method for choosing a split location

IF (F* # () THEN
IF (b} € interior([y* + %, 7F — €%°])) THEN Split at b}

ELSE
lowerCloser := [b¥ — y¥| < |b} — F|
IF (No Relaxed Solution) THEN

IF (lowerCloser) THEN Split at 0.13F + 0.9y*
ELSE Split at 0.97F + 0.1y
ELSE
IF (lowerCloser) THEN
yf = max{yf,gf + O.Ol(gjllC — gf)}
gt = minfyf, gk — 0.05(gF — 4))
ELSE
yp = max{yf,y +0.05(5F —y7)}
gt = minfyl, g — 0.01(g — y))
END
Split at y¥
END
END
ELSE
IF (No Relaxed Solution) THEN
Splitat (y¥ + yf)/2
ELSE
yi = max{yf,y +0.05(5F —yi)}
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yf = min{y?, g — 0.05(g; — yy)}
Split at y/*
END
END

e is small positive number which indicates machine precision. This splitting
procedure guarantees that the width of the intervals produced are bounded above
by either (yF — y* — €9) (case i) or by 0.99(y} — y¥) (caseii). In an infinite
application of branchlng procedure to variable i, case i can only apply a finite
number of times. Let 5 be the index of the last t|me that case i applied. For all
remamlng elements in the infinite sequence, 0 < g/ — y! < 0.9977 (5] — y7).

A relatlve tolerance of 0.0001 was used as the termination criteria for al the
examples. The algorithm also terminates if a time limit of 100000 CPU seconds
or an iteration of 1000000 is exceeded. The first two examples were solved to
tolerance using both full and reduced space modes, and the last example was
solved to tolerance only in the reduced space mode.

6.2. BILINEAR EXAMPLE

This randomly generated problem has a linear objective function, ten linear con-
straints and twenty bilinear constraints. It has twenty-three variables of which only
three need branching with the reduced space algorithm.

min cT[x] (45)
T,y Y
xr
st. A[y] <b (46)
20 3
Y>> Brijmiyj <dp; k=1,...,20 (47)
i=1j=1
—2<y;<2;j=1,...,3 (48)
—2<z;<2:;i=1,...,20 (49)
with
ce R®
A€R10><23

B c R20><20><3

TableslV, V, VI, and VI, appearing in the appendix, provide the nonzero elements
of ¢, d, A, and B respectively.

The agorithm statistics comparing the reduced space and full space modes are
shown in Table I. Both versions of the algorithm locate the same global minimum
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in an acceptable amount of time; however, the reduced space version uses much
fewer iterations and much less CPU time. In the process of solving this problem,
three local minima were located by MINOS of which two are not global minima.
The objective function values of these local minima are -15.2843, -17.6430, and
-20.8008. The number of relaxed problems is higher than the number of branch
and bound iterations because the relaxed problem is resolved with ahot start after a
variable domain reduction. The full space algorithm requires approximately eight
times the CPU time and five times the number of iterations required by the reduced
space algorithm.

Tablel. Algorithm statistics for example one

CPU Relaxations  Original NLPs

Space Iterations  time (s) solved solved
Reduced 995 1849 1472 34
Full 5157 14153 5961 79

6.3. PRODUCTS OF CONVEX AND LINEAR FUNCTIONS

The second example involves minimizing a convex objective function subject to
constraints involving products of convex and linear functions. It is a small and
simplified version of the formulation for batch reactor design under uncertainty
developed by lerapetritou and Pistikopoulos [9]. The problem has thirty-seven
variables of which only two need branching with the reduced space algorithm.
There are six linear constraints and sixteen nonconvex constraints. The problem
has at least one non-global local minimum.

3
min 3exp(0.6z; TV} 50
o 32—:1 p(0.6z;) + ¢ y (50)
st x; —y; >10g(Si;) ;i ={1,2},5 = {1,2,3} (51)

2
T(342j1i) &XP(ti —y;) < 8; 5 =1{0,...,15} (52)

=1
r<z<z (53)
y<y<y (54)

with
234

5= {4 6 3} (55)

‘= 2.995732273553991
| 2.772588722239781

Thevariable boundsand objective function coefficientsare presentedin Table V1.

(56)
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Both versions find the same solution to this example, but the differencein time
required for solution between the two versionsis larger than example one. Tablell
shows the statistics for the two algorithms. The reduced space algorithm is faster
than the full space agorithm by two orders of magnitude in CPU time, and it
requires three orders of magnitude |ess iterations than the full space algorithm.

Tablell. Algorithm statistics for example two

CPU Relaxations  Original NLPs

Space Iterations  time(9) solved solved
Reduced 25 9.87 31 5
Full 30789 6489.23 54174 176

6.4. PRODUCTS OF NONCONVEX AND CONVEX FUNCTIONS

Thethird example problem hasalinear objectivefunction, onelinear constraint, and
one nonconvex constraint involving the products of nonconvex, cubic functions
and convex quadratic functions. The objective function coefficients for = were
randomly determined, and the objective function coefficients for 4y were chosen.
The constraints were chosen to give a nontrivial problem involving products of
nonconvex and convex functions. The problem hastwenty-three variables of which
three require branching in the reduced space algorithm, and it has at least two non-
global local minima.

; T|Y
min ¢ [m ] (57)
8
st. > (0.1y3 — 0.2y% + 0.01y; + 10)0.5z7 + (58)

=1
16
> (0.1y3 — 0.2y5 + 0.0y, + 10)0.527 +
=9
20
> (0.1y3 — 0.2y3 + 0.01y3 + 10)0.5z7 < 250

1—16

y1+y2+y3=05 (59)
—2<y;<2;i=1{1,23} (60)
0<z;<10; i={1,...,20} (61)

The objective function coefficients appear in Table IX contained in the appendix.
The reduced space algorithm was able to find the globa minimum to the spec-
ified tolerance within an acceptable amount of time, but the full space algorithm
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exceeded the CPU timelimit of 200000 CPU seconds. Tablelll showstheiterations
required for the reduced space algorithm to convergeto the specified tolerance, and
for the full space algorithm, it shows the tolerance achieved within the CPU time
limit. The reduced space algorithm requires only 4.664 CPU minutes, and the full
space algorithm used over 27.77 CPU hours without converging.

Tablelll. Algorithm statistics for example three

CPU Relaxations  Original NLPs

Space Iterations  time (S) solved solved Tolerance
Reduced 433 280 529 21 1.0 x 107*
Full 127328 100000 130730 462 23x1073

7. Conclusions

These examples demonstrate that the reduced space branch and bound algorithm
can provide a dramatic reduction in the CPU time required to solve problems to
finitetolerancewhen N >> M, and the proofs given provide for exact convergence
intheinfinitelimit. The examplesal so demonstrate some of the breadth of problems
to which this technique can be applied.

Branching in a reduced space can be incorporated easily into existing branch
and bound algorithms. The variables can be partitioned automatically or manually
into subsets = and y, and existing programs can use them by forbidding branches
onvariablesin z.

Appendix
A. Automatic partitioning of variables

In this appendix, a proposed algorithm is presented to automatically determine the
minimum set of variables, Y, that require branching for problems presented in the
following factorable form:

zi=x;,7=1L1...,n (62)
j-1/ ' j-1

zZj = Z (C“ZZZ—I—QJ(ZZ)-FZBZJkZZZk) v g=n+1...,N (63)
=1 k=1

Some of the elements of z arejust intermediate variables added to put the problem
infactorableform, but othersarefunction valuesthat are constrained by somelower
or upper bound, 2% or 2" respectively. If z; is an intermediate value, 2} = —oo
and z]U = oo; otherwise, at least one of the bounds is finite. In a sparse problem,
most of the elements of each ¢/ and B’ are zero, and many of the functions &/ ()
are functions whose value is always zero.
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Let I; be the set of variablesincident on the expression for z;.
I:={icl....j—1:c #0¢/(-) # 03k with (B, # O|B, # 0)}

Itisalsouseful to definethe BaseVars(j) function that determinesthe set of original
variables on which the value of z; depends.

{z;} forj <n
BaseVars(j) := { |J BaseVars(i) otherwise (64)
i€l

The assumptions of this work provide that all original variables have finite
lower and upper bounds, z and z respectively. Lower and upper bounds for z, z
and z respectively, are determined using existing interval mathematics techniques
[15]. In addition to being able to provide bounds for z, it must be possible to
determine whether each of the single variable functions¢ is convex, concave, both,
or neither over a specified domain. Let the following functions return a boolean
value indicating whether the function has the indicated curvature over the domain

(2, Zi).

D TRUE if ¢/ isconcaveon [z;, z;
Concave(t; i, zi) = { FALSE otﬁzarwise sl (65)

i _ -\ ._ ) TRUE if¢! isconvexon [z;, z]

Convex(&, zi, 7) = { FALSE otherwise (66)

The algorithm is presented as three subroutines and a main driver. The purpose
of the first two subroutines is to check a particular line of the formulation for
the indicated curvature and to add variables to Y to guarantee that the specified
envel ope becomestight in the infinite limit. These subroutines also accumulate the
set of bilinear interactionsin A. Each element of A isan ordered pair of nonempty
sets (L, R) where L is the set of variables appearing on the left hand side of a
multiplication and R is the set of variables appearing on the right hand side. The
third subroutineis used to choose which side of abilinearity should be addedto Y'.
These subroutines are directed by the main driver.

ALGORITHM 3. Subroutine to ensure atight convex envelope

This subroutine examines the expression for z;. It adds variablesto Y that are
necessary for z; to have atight convex envelopein the infinite limit, and it records
the bilinear interactions between variables set A.

RequireConvex(integer 7)
IF (j > n) THEN
FORi:=1TOj — 1BEGIN
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IF (¢! > 0) RequireConvex(i)
IF (¢! < 0) RequireConcave(s)
IF (-~ Convex(¢/, z;, 7)) Y :=Y U BaseVars(z;)
EL SE RequireConvex(z)
IF (B, > 0) RequireConvex(s)
IF (B, <0)Y :=Y UBaseVars(;)
FORE:=1TOj — 1BEGIN
IF (i #£ k A B}, #0) THEN
A= AU (BaseVars(i), BaseVars(k))
Y =Y U (BaseVars(i) N BaseVars(k))
IF (B}, > 0) THEN
IF (z > 0) RequireConvex(z)
IF (z;, < 0) ReguireConcave(s)
IF (z; > 0) RequireConvex(k)
IF (z; < 0) RequireConcave(k)
ELSE
IF (zx > 0) RequireConcave(z)
IF (z;, < 0) RequireConvex()
IF (z; > 0) RequireConcave(k)
IF (z; < 0) RequireConvex(k)
END
END
END
END
END

ALGORITHM 4. Subroutine to ensure atight concave envelope
Thisis the analogous subroutine for ensuring a tight concave envelope.

RequireConcave(integer 5)
IF (j > n) THEN
FOR::=1TOj; — 1 BEGIN
IF (¢! > 0) RequireConcave(i)
IF (c{ < 0) RequireConvex(i)
IF (-~ Concave(¢, z;, %)) Y := Y U BaseVars(z;)
EL SE RequireConcave(s)
IF (B}, > 0) Y := Y U BaseVars(z)
IF (B!. < 0) RequireConcave(i)
FOR K :=1TOj; —1BEGIN
IF (i # k A BJ, # 0) THEN
A= AU (BaseVars(i), BaseVars(k))
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Y ;=Y U (BaseVars(i) N BaseVars(k))

IF (B}, < 0) THEN
IF (Z > 0) RequireConvex(i)
IF (z;, < 0) ReguireConcave(s)
IF (z; > 0) RequireConvex(k)
IF (z; < 0) RequireConcave(k)

ELSE
IF (Z > 0) RequireConcave(i)
IF (z;, < 0) RegquireConvex(z)
IF (z; > 0) RequireConcave(k)
IF (z; < 0) RequireConvex(k)

END

END
END
END
END

ALGORITHM 5. Subroutine to choose which side of a bilinear interaction to add
toY

This subroutine decideswhich variablesin abilinear interaction of the variables
in L ontheleft hand sideand variablesin R ontheright hand side. For the envelope
to be tight in the limit, all the variables from one side must be in Y. It chooses
the side whose variables not already in Y are linked to most other variables. This
choice resultsin the minimum number of variables being addedto Y.

set ResolveBilinear (set L, set R)

I'=L\Y

R :=R\Y

IF(L' =0V R =0) RETURN 0

L* :={z;:Ja € L',3(b,c) e A,(zi €EbNa€c)V(aebAz; €c)}\ L
R*:={z;:da€ R,A(b,c) € A,(zieEbNacc)V(aebAx; €c)}\ R
IF (|L*| > |R*|) RETURN L'

ELSE RETURN R’

ALGORITHM 6. Main driver to determine branching variables

When an element of z has a finite upper bound, it requires a tight convex
envelope in the relaxation, and likewise when an element of z has a finite lower
bound, it requires a tight concave envelope. The main driver makes the necessary
additions to Y to provide the necessary tight envelopes for all the constrained
elementsof Y.

The driver has two main phases. In the first phase, variables are added to Y
based on their role in squared terms and ¢ while accumulating information about
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the bilinear interactions. In the second phase, the bilinear interactions are resolved.
The elements of A must be processed in order of increasing size where the size of
an element of A isdefined as the maximum of the cardinality of its two component
sets. When the argmin used in the agorithm below has more than one element,
choose any member.

A:=10
Y =0
FOR j :=n + 1 TO N BEGIN
IF (2] < o0) RequireConvex(y)
IF (2] > —o0) RequireConcave(j)
END
WHILE A # () BEGIN
(La R) € argmin(a,b)eA maX{|a|, |b|}
Y =Y U ChooseBilinear(L,R)
A= A\{(L,R)}
END

At the end of the main driver, Y contains the set of variables which require
branching.

B. Coefficientsfor example problems

Table V. Objective function coefficients for example one

7 C; 7 C; 7 C; 7 C;
-1.066890 7 05149100 13 -0.2178510 19 -1.5776400
1.334450 8 1.6398600 14 1.0153500 20 0.0811166
-1.224840 9 0.0678508 15 0.0649806 21  0.0529182

-0.534849 10 -04161970 16 -1.1314100 22  1.6965300
-1.426790 11 05154940 17 1.8142800 23 -0.4532200
-0.234014 12 -0.0328012 18 -1.8519400

o WN PR
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Table V. Right hand sides for example one

i b; k dy, k dy,
1  1.0498000 1 -14089100 11  0.690719
2 -09275090 2 17586000 12  1.849930
3 -00207621 3 16076600 13 -0.281364
4 05252870 4 05655480 14  1.373770
5 -0.1074780 5 15045800 15 0.536129
6 10312700 6 -1.4236300 16  1.664650
7 03278110 7 00323101 17 1.084130
8 -16362600 8 -1.9086900 18 0.784348
9 10860800 9 0.7539460 19 0.618497
10 -1.8557600 10 1.1442900 20 -1.841670

Table VI. Nonzero elements of A for example one

i g Ay i g Ay i Ay

1 1 0791494 4 22 -06831560 8 13 -0.6074750
1 7 1028900 5 2 12722000 8 18 23017330
1 12 1253470 5 9 08997950 8 22  1.2365400
1 19 1196050 5 12 -0.0921251 9 1 15216300
2 2 0316459 5 20 13299400 9 9 0.0291254
2 7 0767426 6 9 12999700 9 11  1.3245300
2 9 -031950 6 13 01536300 9 18 -1.5178200
3 9 -180827 6 15 -19864000 10 7 -1.6190100
3 21 0573109 6 20 -1.8752800 10 10  0.3279450
3 23 1953350 7 8 -11367900 10 11  1.7859800
4 12 -074629 7 12 04287280 10 22  1.4543600
4 15 -0650458 7 16 -0.7282910

4 19 1764980 7 18 -1.8227200
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Table VII. Nonzero elements of B for example one

k 7 j B kij k i ] B kij k 1 ,7 B kij

1 2 3 0598530 6 3 3 -1245270 14 6 2 0.8437320
1 4 2 11618200 6 4 2 1070480 15 17 2 -1.5720900
1 10 2 009%8363 6 8 2 1481690 15 17 3  1.1675800
1 11 1 0593090 7 11 1 -0.738157 15 18 1 -1.2703200
1 12 2 00157741 7 15 2 -1998290 15 20 1 -0.1026120
1 16 2 -03495940 8 3 1 0660109 16 7 1 14422200
2 3 2 15343800 8 13 2 0297381 16 14 2  1.4503700
2 8 1 06215500 8 15 1 0753913 17 3 2 -1.1957700
2 10 1 18293700 9 1 3 -1704470 17 6 2  1.5247900
2 16 2 -11923600 9 6 2 -0489378 17 7 2  0.7601060
3 5 1 168880 9 15 2 -0588499 17 18 1 -0.7240830
3 6 2 10501500 10 11 2 -1.113930 18 9 3 -1.8605100
3 16 3 00280099 11 3 1 1192800 18 13 3 -1.0674200
3 17 1 -01299910 11 10 3 1908350 19 16 1 -1.9499800
4 4 1 04644940 11 13 2 -1.028490 19 20 3 -1.3409600
4 9 3 -10991400 11 14 2 1395810 20 2 1 -1.8119700
4 11 3 12386100 12 18 3 -1569720 20 7 1 -1.1783800
4 19 2 -03364220 13 5 2 -0535376 20 9 2  0.7480300
4 19 3 09405800 13 12 1 0939518 20 12 2  1.4576600
5 10 2 -15426700 13 15 2 -1577420 20 17 3 -0.0330721
5 18 1 15738700 14 1 1 -2771270
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Table VIII. Variable table for example two

Var. Lower bound Upper bound Objective coef.

y1 4.828313737302301 7.025538314638521 0
y2 4.422848629194137 6.620073206530357 0
r1 6.214608098422191 8.411832675758411 0
T2 6.214608098422191 8.411832675758411 0
r3 6.214608098422191 8.411832675758411 0
T4 0 165.5545475362379 1.191905471317204x107°
Ts 0 65.55454753623789  1.51697059985826x 10 °
T 0 186.4007582566057 0.003342149157327824
7 0 65.55454753623789 0.004253644382053594
g 0 213.5992417433942 0.003342149157327824
Tg 0 65.55454753623789 0.004253644382053594
Z10 0 234.4454524637621 1.191905471317204x10°
11 0 65.55454753623789  1.51697059985826x 10~°
T12 0 165.5545475362379 0.003342149157327824
13 0 86.40075825660574 0.004253644382053594
T14 0 186.4007582566057 0.9371515827914514
15 0 86.40075825660574 1.192738378098211
T16 0 213.5992417433942 0.9371515827914514
z17 0 86.40075825660574 1.192738378098211
18 0 234.4454524637621 0.003342149157327824
T19 0 86.40075825660574 0.004253644382053594
20 0 165.5545475362379 0.00334214915732783
T 0 113.5992417433942 0.004253644382053602
T2 0 186.4007582566057 0.9371515827914529
T3 0 113.5992417433942 1.192738378098213
T4 0 213.5992417433942 0.9371515827914529
o5 0 113.5992417433942 1.192738378098213
T2 0 234.4454524637621 0.00334214915732783
27 0 113.5992417433942 0.004253644382053602
28 0 165.5545475362379 1.191905471317204x107°
29 0 134.4454524637621 1.51697059985826x 10~°
T30 0 186.4007582566057 0.003342149157327824
r31 0 134.4454524637621 0.004253644382053594
T3 0 213.5992417433942 0.003342149157327824
T33 0 134.4454524637621 0.004253644382053594
T34 0 234.4454524637621 1.191905471317204x10~°
T35 0 134.4454524637621 1.51697059985826x 10~°
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Table IX. Objective coefficients for example three

Var. Coef. Var. Coef. Var. Coef.
Y1 -04000 =z -0.9196 x4 -0.0108
y2 -05000 =z; -02165 x5 -0.8976
ys -06000 =xg -0.0944 716 -0.8341
r1 -04239 x9 -08582 xi7 -0.7077
r2 -09664 10 -00174 x5 -0.6108
rz3 -04955 11 -06566 x99 -0.7102
z4a -0.8139 1, -02996 wx -0.2678
zs -0.8432 r13 -0.2621
C. Solution for example problems
Table X. Solution of example one
Var. Vaue Var. Value Var. Value
Y1 -0.6032  xs 0.1085 14 -1.2352
Yo -1.9003  z7 2.0000 15 -0.0395
Y3 2.0000 =xs -2.0000 16 0.0899
1 09258 w9 -0.4036 T17 -2.0000
T2 14371 x10 -1.5271 18 -0.5893
T3 20000 z1; -2.0000 T19 -2.0000
T4 18715 =z 2.0000 20 -0.2627
rs -16586 i3 2.0000 Ohbjective -20.8008
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Table XI1. Solution of example two
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Var. Value Var. Value Var. Value
im 6.7795 =z, 165.56 o5 86.40
Y2 6.0863 r13 86.40 To6 234.46
r1 14726 x4 186.40 T27 73.37
r2 18781 x5 86.40 28 165.56
r3 81658 x1s 213.60 29 116.43
T4 16556 x17 86.40 30 186.40
Ts5 65.55 x13 234.46 31 103.40
Te 186.40 x19 73.37 T3 213.60
xr7 65.55 r20 165.56 a3 86.40
rg 21360 x21 113.60 T34 234.46
T9 65.55 z» 186.40 T35 73.37
r10 23446 13 10340 Objective -183.29
Tr11 65.55 o4 213.60

Table XI1. Solution of example three

Var. Value Va.  Vaue Var. Value
Y1 -2.0000 zs 2.6414 T14 0.0261
Y2 0.6019 7 0.6219 T15 2.1703
Y3 18981 s 0.2712 T16 2.0167
1 12176 x9 2.0750 T17 1.7065
T2 27759 x10 0.0421 T18 1.4728
T3 14233 x11 1.5876 T19 1.7125
T4 23378 x12 07244 20 0.6458
s 24220 zi13 06337 Objective -21.412
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